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Abstract The total soluble nitrogen (TSN) content in sugar

beets strongly hinders sugar extraction. Traditionally, the

amount of TSN is not measured directly, but inferred from

the amount of amino nitrogen (*30% of the TSN) in the

beet. Betaine, the other main TSN component, accounts

approximately for another 30%. Betaine also interferes with

sugar crystallization, and it is a highly interesting metabolite

in pharmaceutics and agronomics. The aim of this study was

to develop non-invasive near-infrared (NIR) applications to

measure the TSN and betaine content in beets in a fast and

reliable way. Sugar beets were harvested for up to five har-

vest periods, and pulp samples were measured with a NIR

system.Calibrationmodels reached correlations (R) between

laboratory and predicted values of 0.823 for TSN and 0.947

for betaine, respectively. The prediction of independent

validation sets showed also high correlation coefficients for

both TSN (R = 0.756) and betaine (R = 0.837). These NIR

applications could be very helpful in the assessment of beet

quality in breeding programs and industrial processes.
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Introduction

The amount of sugar that can be extracted from a specific

sugar beet variety is the main character that accounts for a

high beet quality and therefore the most relevant trait for

the sugar industry, beet growers, and beet breeders. There

are several components in the beet that have a negative

influence on the sugar extraction, mainly the total soluble

nitrogen (TSN), sodium, and potassium content (van der

Poel et al. 1998). Sodium and potassium are routinely

measured by the sugar industry and breeders to assess beet

quality. The determination of TSN is on the other hand

difficult to introduce in processes involving a big number

of samples due to high laboratory cost and long sample

processing. TSN levels in beets have been highly correlated

to levels of free amino acids or, in short, amino nitrogen

(amino N) (Schiweck et al. 1994; Hoffmann 2005, 2006).

The determination of amino N is precise, fast, and has a

low cost. As a result, the only fraction of the TSN analysed

at the moment to assess beet quality is the amino N com-

ponent. However, the amino N fraction constitutes on

average only about 30% of the TSN content. Betaine is the

other main TSN component, accounting for approximately

another 30% (Burba et al. 1984; Hoffmann 2006). As with

all TSN constituents, high betaine levels in sugar beet roots

are undesirable because it interferes with sucrose crystal-

lization (Hoffmann and Märländer 2005). Physiologically,

betaine helps to maintain the osmotic balance in the cell

and it is a source of methyl groups for use in many bio-

chemical pathways (Hanson and Wyse 1982; Craig 2004).

These traits make of betaine a highly valuable metabolite

with a broad spectrum of applications in agronomics and

pharmaceutics (Craig 2004; Mäkelä 2004; Day and

Kempson 2016).

It has been shown that a low content in amino N in the

beet is compensated with a higher content in betaine

(Hoffmann and Märländer 2005; Hoffmann 2005). There-

fore, beets with a low content of amino N could be too well

rated concerning the total content of nitrogen or vice versa,

since betaine is not included in the evaluation. This
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problem is well known, and the suggestion to improve the

quality assessment by adding TSN and/or betaine mea-

surements to the standard analyses has been done already

by several authors (Burba and Schiweck 1993; Beiss 1994;

Burba 1996, Burba et al. 2001; Hoffmann and Märländer

2005; Hoffmann 2006; Dutton and Huijbregts 2006).

Since the late 1980s, near-infrared (NIR) spectroscopy

technology has been steadily spreading in agriculture

(Givens and Deaville 1999). Well-established NIR appli-

cations are for instance the measurement of protein content

in wheat and hardness in maize (Fox and Manley 2009;

Williams 2010; Pojić et al. 2012). In the sugar beet sector

in particular, NIR spectroscopy is increasingly being used

to measure the sucrose content in beets (Heppner et al.

2000; Roggo et al. 2004). Well-known advantages of this

technology are to be a non-destructive method, cost effi-

cient, a small amount of sample is required, high precision,

a very quick measurement, easy sample preparation

(without added chemicals), and it is possible to determine

several substances at once. Altogether, these factors allow

a higher number of analysed samples, and at much lower

costs, than traditional laboratory methods.

Materials and Methods

Sampling: NIR measurement was integrated in the har-

vesters, and measurements were arranged in parallel to the

harvest process. The field trials consisted of an alpha lattice

design layout with three row plots of 9 m2. All sugar beets

in a plot were harvested, topped, washed, and sawn into a

very fine pulp. This pulp was well mixed to obtain a

homogeneous and representative pulp sample for each plot.

The pulp was spread in 7-mm-thick plates that were

immediately measured by NIR. Spectra were measured

under reflection with the spectrometer PSS 1720 (Polytec

GmbH, Waldbronn, Germany) every 2 nm, in the spectral

range 850–1650 nm. One NIR measurement takes 3.2 s.

After measurement, the plates were covered and stored at

-20 �C for further analytical procedures.

Total soluble nitrogen determination: 716 samples were

collected over five harvest periods: 2009 (69 samples),

2010 (189 samples), 2011 (222 samples), 2014 (120 sam-

ples), and 2015 (116 samples) and sent for TSN content

determination to the Institute for Feed Analysis (LUFA

Nord-West) in Oldenburg (Germany). The Kjeldahl

method (VDLUFA Bd.III 4.1.1) was used to determine the

percentage of TSN in fresh pulp. Samples were harvested

at 20 different sites in Germany and France with 17 and 3

sites, respectively.

Betaine determination: 375 samples were collected over

four harvest periods: 2012 (140 samples), 2013 (33 sam-

ples), 2014 (92 samples), and 2015 (110 samples) and sent

for analysis to Nordzucker AG in Braunschweig (Ger-

many). HPLC was used to determine the percentage of

betaine in fresh pulp (ICUMSA Method GS 4-22 2002).

Samples were harvested at 15 different sites in Germany

and France with 13 sites and 2 sites, respectively.

The genotypes used for TSN and betaine analyses were

chosen randomly in every harvest period and differ from

year to year. Therefore, the samples in this study are to be

considered as individual samples and not as replicas.

Amino N determination: All above-mentioned samples

collected for TSN and/or betaine analyses, 925 samples in

total, were also analysed for amino N content at Strube

Research GmbH & Co. KG by using the fluorometric OPT

(O-Phthalaldehyde) method.

Chemometrical analyses: Calibration models were

developed using the SensoLogic Calibration Workshop

v.2.10 and SensoLogic Calibration Wizard v.2.0 software

packages (SensoLogic GmbH, Norderstedt, Germany).

Data were separated into a calibration and a validation set.

One in every five samples was selected to create an inde-

pendent and representative validation set. The remaining

samples constituted the calibration set. Calibrations were

calculated with means of partial least squares regression

(PLSR) proceeded by several spectroscopic data pre-

treatments. Combinations of first derivative, second

derivative, normalization, and standard normal variate

were used to optimize calibrations. The performances of

the different models obtained during the calibration phase

were determined from cross-validation as an internal vali-

dation method. In addition, the external validation set was

used to test the prediction capacity of the models. The best

calibration models for each parameter were selected based

on a low root-mean-square error of cross-validation

(RMSECV), low bias, increasing correlation coefficient

(R) in calibration and prediction, and decreasing standard

error of prediction (SEP) and root-mean-square error of

prediction (RMSEP).

Statistical analyses: To further evaluate the performance

of the calibration models, heritability (h2) analyses were

carried out with TSN and betaine values predicted with the

optimized calibrations. None of the samples included in the

NIR calibrations were used for h2 calculations. As a means

of comparison, h2 was also calculated with laboratory

amino N values determined for the same sets of samples.

Heritability was calculated according to the formula of

Hallauer and Miranda (1981):

h2 ¼
r2g

r2g þ
r2

gl

l
þ r2e

rl

where rg
2 is the genotypic variance r2gl the genotype-loca-

tion interaction variance, and r2e s the error variance. The

number of replications is r and the number of locations is l.
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Heritability calculations were performed for three indi-

vidual sites from the harvest period 2015, in which all

harvested samples were also measured with NIR. Since

each location was analysed separately, the formula of

heritability reduces to repeatability within a site. Data sets

used for h2 calculations consisted of: three trials (266

samples) for a site near Terny–Sorny (France), 12 trials

(1240 samples) for a site near Pithiviers (France), and eight

trials (606 samples) for a site near Soest (Germany). Lab-

oratory values for TSN and betaine were not available for

these samples; thus, a direct comparison between NIR

estimated and laboratory values could not be calculated.

The variance components were calculated using a mixed

model, y ¼ l : g þ r þ b which consisted of random

effects including genotype (g), replication (r), and block

(b) (Piepho et al. 2003). Data were also tested for normal

distribution and variance homogeneity. Statistical analyses

were performed with GenStat v.14 (VSN International

2011).

Results

The complete spectral range measured (850–1650 nm) was

used for calibration development. For TSN, the best

spectrometric pre-treatment consisted of a second deriva-

tive followed by a standard normal variate transformation.

For betaine, the best results were obtained by applying a

first derivative followed by a standard normal variate. In

the optimized calibration model for TSN, the Pearson

correlation coefficient reached R = 0.823, while for

betaine, the correlation coefficient reached R = 0.947

(Fig. 1). The prediction of the independent validation data

sets showed that the predicted NIR values were adjusting

well to the laboratory values for both parameters. Calcu-

lated correlation coefficients were 0.756 for TSN and 0.837

for betaine, respectively. The parameters indicating pre-

dictive ability, SEP and RMSEP, were equal up to the third

decimal for both models, TSN and betaine. The SEP

squared is approximately equal to the RMSEP squared

minus the bias squared. Therefore, like in the present data,

if the bias is low, the values for RMSEP and SEP will be

similar. The bias obtained for the prediction of both vali-

dation sets were 0.001 for TSN and -0.001 for betaine,

indicating a low systematic difference between the values

obtained in the laboratory and the values obtained with the

NIR prediction. The main characteristics from both cali-

bration and prediction data sets, as well as the main

descriptive parameters for calibration models and predic-

tions, are summarized in Table 1.

A comparison among TSN, betaine, and amino N was

also carried out by considering only the obtained laboratory

values (Table 2). The TSN content in the 716 samples

analysed ranged from 0.070 to 0.182% in fresh pulp. The

percent of betaine in the 375 samples analysed ranged from

0.071 to 0.234% in fresh pulp. One hundred and sixty-six

samples comprising two harvesting periods (2014 with 56

samples and 2015 with 110 samples) could be analysed in

common for TSN and betaine. The amino N content for all

925 samples ranged from 0.27 to 2.66 mM per 100 g-1

pulp. Betaine levels presented a low correlation with amino

N levels (R = 0.442), in contrast to betaine and TSN

levels, where a high correlation was observed (R = 0.799).

Fig. 1 Calibration models for TSN (n = 572) and betaine (n = 300)

in sugar beet pulp. Laboratory values versus NIR-predicted values are

indicated. The prediction of the validation samples is also shown

(n = 144 for TSN and n = 75 for betaine), as well as correlation

coefficients for calibration and validation
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A moderate correlation was found between amino N and

TSN levels (R = 0.593). When looking at the data on a

yearly basis, higher correlations between TSN and amino N

were observed for all periods (R ranged from 0.758 to

0.929) except for 2011 (R = 0.522). All correlations were

found to be highly significant.

Concerning the heritability analyses, in two of the three

tested sites, betaine NIR-predicted values showed better h2

results than TSN NIR-predicted values and amino N lab-

oratory values. The h2 values for amino N were higher than

for TSN or betaine only in the Soest site (Table 3).

Discussion

Selection against components that impair an optimal sugar

extraction is of extreme importance. Due to analytical limi-

tations, however, the determination of some of these factors

such as TSNor betaine is not established as a standard quality

screen so far. The hereby presented NIRmodels show a good

adjustment betweenNIR and laboratory values in calibration

aswell as in prediction, and thus demonstrate that an accurate

NIR determination of TSN and betaine is possible. The

measurement of both parameters takes less than 4 s, and it

could be easily incorporated in sugar beet pulp analyses for

large amount of samples. Heritability calculations supported

a good prediction result, since h2 for TSN- and betaine-

predicted values were in the same order of magnitude as h2

for amino N laboratory values. NIR applications performed

with the same repeatability within a location as standard

laboratory measurements.

A first important step in the sugar beet nitrogen mea-

surement with NIR was done by Burba et al. (2001), when

they successfully calculated a NIR calibration for TSN.

They obtained a coefficient of correlation between labo-

ratory and NIR values of 0.985. The calculation of SEC

and SEP was dismissed due to the small number of samples

available. Only a single harvest period, 79 samples for

calibration and 12 samples for validation were available in

that study. The introduction of different harvesting years in

agricultural NIR applications is a very important factor in

the process of calibration optimization (Igne et al. 2007). In

sugar beet breeding, it is well known that the year effect is

by far the most important factor affecting yield parameters

(Freckleton et al. 1999; Stockfisch et al. 2002; Kenter et al.

2006). The composition in the beet is influenced by

genotype, but also by environmental factors including soil

preparation, fertilizer, crop rotation, presence of diseases,

amount of rain, and temperature, which can vary signifi-

cantly from year to year. The results achieved by Burba

et al. (2001) indicated that the detection of TSN with NIR

was feasible within a given year. As they also point out,

however, their model as such had no predictive value in

practice, because year effects were not introduced in the

calibration. Besides genotype and environment as such,

genotype by environment interaction (GEI) does occur

(Hoffmann et al. 2009; Mackay et al. 2011; Liebe and

Varrelmann 2016). Variation in the beets due to GEI

effects could decrease the prediction accuracy if these

factors are not enclosed in the calibration models. In order

to decrease SEP to a minimum, the NIR calibration needs

to encompass several sites and several harvesting periods.

Considering laboratory analyses, the correlation

between betaine and TSN observed in the present data

(R = 0.799) is similar to the correlation reported by Burba

et al. (2001) (R = 0.752). The moderate (R = 0.593) but

highly significant correlation obtained between laboratory

values for amino N and TSN was close to the correlation

reported by Burba (1996) (R = 0.691), but unexpected

considering previous studies which found correlations at

the 0.9 level (Schiweck et al. 1994; Hoffmann 2005, 2006).

In the present data, a 0.9 correlation is only reached for the

harvest period 2015. This might lead to consider that a high

TSN-amino N correlation cannot be assumed under every

circumstance, since environment has clearly a strong

Table 1 Descriptive characteristics of NIR calibration models for

TSN and betaine in sugar beet

%TSN %Betaine

Calibration set

Samples 572 300

Years 2009, 2010, 2011,

2014, 2015

2012, 2013, 2014,

2015

Property range 0.070–0.182 0.071–0.234

Calibration parameters

R laboratory/

predicted

0.823 0.947

SEC 0.010 0.010

RMSECV 0.013 0.014

PLSR variables 11 15

Validation set

Samples 144 75

Years 2009, 2010, 2011,

2014, 2015

2012, 2013, 2014,

2015

Property range 0.081–0.181 0.077–0.221

Validation parameters

Bias 0.001 -0.001

SEP 0.013 0.018

RMSEP 0.013 0.018

R laboratory/

predicted

0.756 0.837

Units for TSN and betaine: % from fresh pulp

TSN total soluble nitrogen, PLSR partial least squares regression; SEC

standard error of calibration, RMSECV root-mean-square error of

cross-validation, SEP standard error of prediction, RMSEP root-

mean-square error of prediction
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impact on the nitrogen components in beet. Specifically,

the betaine content has been reported to be affected by

irrigation, year, site, variety, fertilizers, and topping (Smed

et al. 1996). Additionally, it has been shown that betaine

and amino N react markedly differently to environment

effects (Hoffmann et al. 2009). For instance, under

increased nitrogen supply in soil, the amino N fraction in

the beet has been described to increase, while the betaine

fraction decreases (Hoffmann 2005). However, contradic-

tory results have been presented as well, with an increase in

betaine in beet following nitrogen supply (Beiss 1994;

Burba 1996). Levels of betaine have been reported to rise

under stress situations such as drought, towards the end of

the growing period, at a low plant density, and to be higher

in beet crowns (Hanson and Wyse 1982; Beiss 1994; Gzik

1996; Shaw et al. 2002; Hoffmann 2006; Choluj et al.

2008). This last point might be especially relevant when

beets are being harvested only defoliated and not topped.

Betaine levels are omitted nowadays by the standard quality

analyses. Betaine is of interest considering its role in hindering

sugar extraction, and it is also a highly valuable compoundwith

an increasing range of agronomical, nutritional, and medical

uses. Theworld betainemarket seems to be expanding, and it is

projected to reach USD 3.89 billion by 2020 (

www.marketsandmarkets.com 2015). The screening and

selectionof varietieswithhighbetaine content couldbecomean

additional economical factor to be considered by beet farmers

and sugar industry. Paramount to explore this possibility would

be the incorporationof a betainemeasurement in routinequality

analyses. Interestingly, it has been shown that in a range of

environments, the genotype effect is bigger for betaine (8.5%)

than for amino N (3.2%) (Hoffmann et al. 2009). This could be

due to an increased breeding pressure against the amino N

levels in the beet, while the betaine has not been, or could not

have been, selected for so far.

Growers, sugar industry, and breeding programs might

benefit from a direct measurement of TSN and betaine in a

fast, low-cost, and accurate manner. NIR technology could

make this possible. Further research might be required to

better understand the GEI effects in the relation TSN–be-

taine–amino N. Increasing the number of samples, loca-

tions, and harvest periods might improve further the

performance of the calibration models hereby presented.

However, the results of this study clearly indicate that the

measurement of TSN and betaine is possible with NIR in a

simple and reliable way. The introduction of such NIR

Table 2 Correlation coefficient (R) among laboratory values for TSN, betaine, and amino N

Amino N Betaine TSN Samples Years

All available samples

Amino N 0.442*** 375 2012, 2013,

2014, 2015

Betaine 0.799*** 166 2014, 2015

TSN 0.593*** 716 2009, 2010,

2011, 2014,

2015

Divided in years

Amino N 0.451*** 140 2012

Amino N 0.512** 33 2013

Amino N 0.614*** 92 2014

Amino N 0.730*** 110 2015

Betaine 0.722*** 56 2014

Betaine 0.822*** 110 2015

TSN 0.758*** 69 2009

TSN 0.827*** 189 2010

TSN 0.522*** 222 2011

TSN 0.760*** 120 2014

TSN 0.929*** 116 2015

*** Significantly different at: P\ 0.001

** Significantly different at: P\ 0.01

Table 3 Heritability coefficients for three sites from harvest period

2015

Site TSN Betaine Amino N

Soest 0.48 0.49 0.80

Pithiviers 0.60 0.79 0.56

Terny-Sorny 0.57 0.67 0.63

NIR-predicted values were taken for the TSN and betaine calcula-

tions. Laboratory values were used for the amino N calculations
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applications in routine analyses could be of great help for

the quality assessment of sugar beet varieties.
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