
sensors

Communication

Field Detection of Rhizoctonia Root Rot in Sugar Beet by Near
Infrared Spectrometry

Leilane C. Barreto *, Rosa Martínez-Arias and Axel Schechert

����������
�������

Citation: Barreto, L.C.;

Martínez-Arias, R.; Schechert, A.

Field Detection of Rhizoctonia Root

Rot in Sugar Beet by Near Infrared

Spectrometry. Sensors 2021, 21, 8068.

https://doi.org/10.3390/s21238068

Academic Editor: Daniel Popa

Received: 20 October 2021

Accepted: 29 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Strube Research GmbH & Co., KG, Neue Strasse 11, 38838 Schlanstedt, Germany;
r.martinez@strube-research.net (R.M.-A.); A.Schechert@strube.net (A.S.)
* Correspondence: l.barreto@strube-research.net

Abstract: Rhizoctonia root and crown rot (RRCR) is an important disease in sugar beet production
areas, whose assessment and control are still challenging. Therefore, breeding for resistance is the
most practical way to manage it. Although the use of spectroscopy methods has proven to be a
useful tool to detect soil-borne pathogens through leaves reflectance, no study has been carried out
so far applying near-infrared spectroscopy (NIRS) directly in the beets. We aimed to use NIRS on
sugar beet root pulp to detect and quantify RRCR in the field, in parallel to the harvest process. For
the construction of the calibration model, mainly beets from the field with natural RRCR infestation
were used. To enrich the model, artificially inoculated beets were added. The model was developed
based on Partial Least Squares Regression. The optimized model reached a Pearson correlation
coefficient (R) of 0.972 and a Ratio of Prediction to Deviation (RPD) of 4.131. The prediction of the
independent validation set showed a high correlation coefficient (R = 0.963) and a root mean square
error of prediction (RMSEP) of 0.494. These results indicate that NIRS could be a helpful tool in the
assessment of Rhizoctonia disease in the field.

Keywords: Rhizoctonia solani; near-infrared spectroscopy; soil-borne pathogen; disease detection;
Beta vulgaris

1. Introduction

Rhizoctonia root and crown rot (RRCR) is a widespread disease in sugar beet (Beta
vulgaris L.) production fields which has been disseminating over a large area in Europe
and in the United States in the last decade [1–3]. RRCR is caused by the soil-borne fungus
Rhizoctonia solani J. G. Kühn, a pathogen that lives in soil independently of the host presence,
competes with the microflora and depends on the host plant and on the environment to
propagate over space and time [4,5].

RRCR is usually associated with the developing canopy and occurs mostly late in the
cropping season on older plants [6]. After the invasion of the fungus on petioles in contact
with the soil, black lesions appear on the base, then the rotting progresses to the crowns
and roots accompanied by above-ground symptoms that include severe wilting, collapse
and yellowing of leaves. Root rot develops as brown to black, sunken and circular lesions,
which often clump together and cover large areas of the root surface [5,7]. The affected
and stunted plants form elongated patches that are dynamic and vary in size in the fields,
changing the disease pattern in the affected areas within and between seasons [4].

The yield loss caused by Rhizoctonia infection is determined by the extent of the
disease attack and varies from field to field, reaching up to a 60% yield depletion [8,9].
The unpredictable occurrence of the disease and the varying intensity of losses in different
seasons make the control of RRCR in sugar beet extremely difficult, resulting in an inherent
epidemiological variability and uncertainty to the producers about the severity of the
disease in a given season. In addition, this disease also affects beet storage and the technical
quality of sugar beets, both factors playing an important role during sugar processing and
extraction [1,3,4].
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Controlling the RRCR disease is a challenge for breeders and farmers, and so far there
is still no effective, economically practical and environmentally safe method to restrict
disease outbreaks [3,4]. The attempts of disease management of R. solani on sugar beet
include crop rotation, fungicide application with recommended rates during seed treatment,
as well as in 6–8 leaf stage in some countries, and the development of resistant cultivars [2,9].
Therefore, breeding for resistance to R. solani has been a must and an on-going work for
sugar beet breeders in the last decades, offering the most practical way to control the
disease. However, immunity to R. solani has not been found yet in sugar beet germplasm.
The incorporation of high levels of resistance in commercial cultivars takes many years,
and breeding for resistance requires reliable methods for disease assessment [1,2,10].

To evaluate the severity of the disease, breeders usually rely on visual evaluation of
surface rot on beets under greenhouse artificial inoculation. Within a field, a disease lesions
assessment in the beets might be a more direct and precise method than in the greenhouse.
Nevertheless, this assessment is destructive and entails a limited sampling size, besides the
fact that visual disease assessments are subjective and can be therefore biased [11]. Indeed,
and according to Büttner et al. [1], one of the limitations that breeders face when trying
to select for Rhizoctonia resistant genotypes, is the lack of suitable methods for disease
assessment. Several studies have tried to assess disease severity by using spectroscopy
methods in sugar beet leaves. Hillnhütter et al. [12,13] demonstrated that the symptoms
caused by RRCR induced modifications that could be detected by hyperspectral image
analysis. When investigating the potential of remote sensing in the early detection of RRCR
in sugar beet, Reynolds et al. [14] concluded that remote sensing can detect the disease, but
only after the initial appearance of foliar symptoms. Barreto et al. [15] as well as Strube
GmbH & Co. [16] showed that under controlled conditions the early detection of indirect
symptoms caused by Rhizoctonia root rot in sugar beet plants is possible using leaves
reflectance information. However, when comparing the scoring of leaf symptoms with the
scoring based on root symptoms, Scholten et al. [10] concluded that it is not recommendable
to use leaf symptoms for disease assessment, as they might be more erratic. Considering
that, in this study we applied near-infrared spectroscopy (NIRS) directly on sugar beet
roots. Based on specific signatures of electromagnetic radiation absorbance in the NIR
range, it is well known that NIRS provides a powerful while simple and rapid analytical
technique with little sample preparation time and high-throughput [17–19]. And thus,
precision agriculture has greatly benefited from a fast and continuous development of NIRS
prediction models in the last decades. In sugar beet, NIRS applications have so far focused
their efforts on root performance and quality traits [20–24]. This study aimed to expand
those applications to the detection and quantification of root diseases, by developing a
fast and reliable prediction of RRCR incidence scoring that could be applied directly in
the field.

2. Materials and Methods
2.1. Field Trials

An alpha lattice design layout with three row plots of 9 m2 was used in the field
trials. Each trial plot consisted of 90 sugar beets, which were harvested, topped, washed,
ground and finally measured with NIR. After the washing step, the beets were clean and
spread (Figure 1) and could be scored for Rhizoctonia infection. The scoring of disease
incidence was performed taking into account both the number of affected beets per plot
and the severity of the infection, which was based on the percentage of rotten root surface
in relation to the volume of the beet. For this visual assessment in the field, the beets were
rated based on a disease classes scale modified from Büttner et al. [1] ranging from 0 to 9,
where 0 indicates healthy beets and 9 highly infected (Figure 1). All beets from a given plot
were scored at once (Figure 2).
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Figure 1. Disease scale used to score Rhizoctonia root and crown rot in sugar beet based on the
percentage of rotten root surface area.

Figure 2. Sugar beet beets after the washing step and at the time of scoring RRCR in the harvester.

Thereafter, all beets per plot were ground into a very fine pulp, which was then
well mixed and spread in 7-mm-thick plates that were immediately measured by NIRS
(Figure 3). One measurement was taken therefore from a homogeneous pulp sample,
representative for the 90 beets of a given plot. Consequently, the samples in this study
are to be considered as individual samples and not replicates. NIR measurements were
integrated to the harvesters and taken in parallel to the harvest process in the field. The
spectrometer PSS 1720 (Polytec GmbH, Waldbronn, Germany) was used to collect spectra
under reflection. Spectral information was recorded every 2 nm in the spectral range
850–1650 nm. A single NIR measurement took 3.2 s. A total of 751 samples in two different
sites in Germany could be collected in the year 2020.

Figure 3. Homogeneous and representative pulp samples from a given field plot being measured
with NIR under reflectance. NIR equipment was installed in the harvester.
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2.2. Greenhouse Experiment

To increase the number of samples with a high range of infection, additional green-
house (GH) beets were artificially inoculated. After 8 to 10 weeks of growth, each beet was
inoculated with 0.25 g of infected, ground barley. The trial was harvested after 14 to 21 days
post infection, depending on the infestation of the susceptible controls. The samples from
the GH were rated on a single beet bases considering the percentage of infection. Each
sample consisted of 10 infected single beets belonging to the same scoring class, which
were, after the scoring, ground into a very fine pulp using a kitchen hand mixer. The
resulting fine pulp was spread in 7-mm-thick plates and immediately measured by NIRS
with the same spectrometer model and in the same way as described above for the harvest
in the field. In total, 70 samples from the GH were added to the data set.

2.3. RRCR Disease Index

Based on the scoring obtained after assessing the disease, the rhizoctonia disease index
(RDI) was then calculated as

RDI = ∑ disease severity class × nr plants within that class
∑ nr plants in each class

2.4. NIR Chemometrical Modelling

The disease stage of some rhizoctonia infected beets might be so advanced that harvest
is not feasible anymore. Translated into sampling, this means that (i) samples in the high
range of infection might be missing, and (ii) many more samples were scored in the low
range of infection than in the higher range of infection, independently of how high the
rhizoctonia infection was originally in the field. Point (i) led to the GH measurements
described above. Point (ii) would have caused spectral redundancy in the lower infection
scoring range. To overcome redundancy, a Gauss-Jordan algorithm was applied in order to
select only informative spectra. From the 821 available samples, a resulting set of 370 spectra
could be used for further chemometrical modelling. This set of informative spectra was
split into a calibration and an independent validation set. To obtain a representative
validation set, an algorithm was applied to the 370 samples set, selecting one in every five
samples (74 samples in total). The calibration set consisted of the remaining 296 samples.
Model development was based on Partial Least Squares Regression (PLSR), with full
cross-validation as an internal validation method. The prediction accuracy of the models
was tested with the above-described independent validation set and with an additional
independent validation set comprising 94 samples from a field in Germany with natural
Rhizoctonia infestation from harvest season 2021.

Several spectroscopic data pre-treatments were tested to optimize chemometrical
modelling. Sequential combinations of first derivative, second derivative, normalization,
standard normal variate, fixed first derivative, fixed second derivative, Savitzky–Golay
and detrending were analysed. The parameters considered to select an optimal calibration
model were a low Root Mean Square Error of Cross-Validation (RMSECV), low bias, low
Standard Error of Prediction (SEP), low Root Mean Square Error of Prediction (RMSEP),
high Ratio of Prediction to Deviation (RPD), and high Pearson correlation coefficient (R).

During the prediction model development, outliers were identified and removed
by selecting samples with high residual values. Leverage outliers were calculated over
all calibration set spectra using the H statistic according to the formula E(H) = K+1

n ,
where E(H) is the average value that indicates a measure of multidimensional distance
of a spectrum to the regression line, k is the number of factors and n the number of
spectra in the calibration set. Values higher than 3 were considered outliers. Spectrum
reconstruction error outliers were obtained by recalculating the original spectrum from
the selected factors. For that, the mean deviation of the reconstructed spectrum was
calculated over all wavelengths and normalized to the mean deviation calculated over all
calibration set spectra. Spectra with values higher than 5 were considered outliers. Outliers
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that are both leverage and spectral reconstruction were calculated through a student t test

(ti =
e

SEE
√

1−H
) and through a Cook’s statistic test (D = ti

2· H
(k+1)· (1−H)

), where ti corresponds
to the residual error, e is the difference between the estimated value and the reference value,
SEE is the standard error of estimation, H is the leverage statistic for this sample, D is the
value indicating the influence of the spectrum in the regression model and k is the number
of factors. Spectra with values higher than 3 were listed as outliers.

SensoLogic Calibration Workshop v.2.10 and SensoLogic Calibration Wizard v.3.0 soft-
ware packages (SensoLogic GmbH, Norderstedt, Germany) were used for model optimization.

3. Results

The RDI scoring according to the formula described above ranged from 0 to 3.1 in
field samples and from 0 to 8.5 in GH samples. A first visual screening of the spectra
did not allow the detection of any differences between healthy or highly infected samples
(Figure 4). The whole spectral range measured (850 to 1650 nm) could be used for cali-
bration development, without the need to remove noisy bands at the spectral ends. The
best result for RRCR quantification was obtained by applying a first derivative followed
by a standard normal variate pre-treatment. Six samples (2% of the total calibration set)
were considered leverage and spectral reconstruction outliers and were removed from the
calibration set. The calibration model found optimal for RRCR quantification achieved a
Pearson correlation coefficient of R = 0.972 (Figure 5) and a Ratio of Prediction to Deviation
(RPD) of 4.131. The maximum number of factors calculated was 20, and the most advanta-
geous number of factors for the optimized model was considered 12 (Figure 6). A decrease
or an increase in the number of factors was worsening the prediction results.

Figure 4. Example of eight NIR spectra from sugar beet pulp, corresponding to healthy and RRCR infected beets with differ-
ent degrees of disease severity. The spectrometer was used in reflectance mode and data was transformed into absorbance.



Sensors 2021, 21, 8068 6 of 10

Figure 5. NIR calibration model for rhizoctonia detection in sugar beet beets using the rhizoctonia
disease index (RDI). Calibration (n = 296) and validation samples (n = 74) are represented, as well as
the Pearson correlation coefficients for both data sets (Rcal and Rval).

Figure 6. Number of factors and Root Mean Square Error of Cross Validation (RMSECV) obtained
through the cross-validation process using a PLSR method. The number of factors considered
optimum is indicated by the dashed lines.

The prediction of the independent validation data set showed a good adjustment
between the predicted NIR values and the visual scoring values, with a correlation coef-
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ficient of R = 0.963, which was found to be highly significant (p < 0.001), and a RPD of
3.677. The parameters standard error of prediction (SEP) and root mean square error of
prediction (RMSEP) indicated a good predictive ability as well, since both SEP and RMSEP
were equal up to the second decimal (0.497 and 0.494, respectively). Considering that the
SEP squared is approximately equal to the RMSEP squared minus the bias squared, this
was also reflected in the low bias of the prediction, that was −0.029 in absolute terms. The
prediction of the external independent data set from harvest 2021 resulted in a correlation
coefficient of R = 0.901, Bias = 0.283 and SEP = 0.308 (Figure 7).

Figure 7. Prediction of an external independent data set obtained from a field with natural Rhizocto-
nia contamination from harvest season 2021 in Germany (n = 94; R = 0.901).

4. Discussion

The results of this study show that the detection and quantification of RRCR directly
in beets is feasible with NIR. To the best of our knowledge, this is the first study that uses
NIR measurements directly on sugar beet root pulp to detect and quantify RRCR based on
an incidence scoring in the field. Although the assessment of the disease severity using
spectroscopy methods has been proved to be possible in sugar beet, most of these studies
were either carried out on leaves or under controlled conditions [12–15]. As demonstrated
by Scholten et al. [10], leaf and root symptoms often do not correlate, and the use of root
symptoms proved to be more recommendable for disease assessment as they are more
accurate. Moreover, despite the numerous advantages of GH testing, the necessity to test
rhizoctonia directly in the field has been pointed out before [1,25]. Besides the fact that
RCRR is affected by environmental conditions in a great measure [26], sugar beet genotypes
react differently to different climate and soil conditions. Thus, the interaction genotype-
environment can only be effectively evaluated in the field and not in a greenhouse.

The optimal calibration model was developed by using PLSR method as linear regres-
sion and for that, the number of factors used in the model is of crucial importance. The
optimum number of factors (in this model considered 12) is usually the number where the
Root Mean Square Error of Cross Validation (RMSECV) has its first minimum and is found
through the cross-validation process, decomposing the spectral data matrix between the
informative part of the spectral signature and the noise [27]. If the full set of factors is used
(in our case 20), there is no clear distinction between the informative part of the spectral
signature and the noise, thus generating an overfitted model that would include parts of
the spectral noise of the calibration set spectra as prediction relevant variables. This would
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result in a poor performance in the validation set prediction despite of a low RMSECV. On
the contrary, the use of too few factors would result in an underfitted model [28,29]. Thus,
the number of factors here found optimal might be considered one of the indicators of the
good fit of the prediction model.

Additionally, the coefficients of correlation in both calibration (0.972) and prediction
(0.963) reflect the prediction accuracy, that is how close the prediction values are to the
parameter values used as a reference. Normally, lab reference values are used for modelling,
in this study a visual RRCR scoring was used instead, as this is the usual approach to score
RRCR in the field nowadays. In this regard, it might be mentioned that a NIRS scoring
could provide an objective advantage over potential biases of visual scorings.

Other parameters providing information about the prediction accuracy are the SEP,
RMSEP and the bias. Ideally, predictions should be as accurate as possible, resulting in low
RMSEP and SEP values [30]. The bias is a good indicator of similarity between validation
samples and the calibration set [31], conveying a further measure of the goodness of the fit.
In sum, the bias of −0.029 obtained in this application together with the SEP and RMSEP
values indicate a good adjustment between the predicted NIRS values and the RDI visual
scoring of the beets. Moreover, the high correlation observed between the NIR prediction
and the RDI values from the external independent validation set argues against a possible
overfitting of the model and corroborates the efficiency of this NIR application.

Another useful indicator in the development of calibration models is the RPD, which
has been used for several years in NIR studies of agricultural products [32,33]. It enables
the evaluation of the SEP in terms of the standard deviation of the reference data. The RPD
values considered appropriate for each NIRS analysis may change depending on the nature
of the material. Within agricultural applications, values higher than 3 may be difficult
to obtain, and often models with RPD > 3.5 are considered very good [33,34]. Therefore,
the RPD values of 4.131 in the calibration and 3.677 in the prediction found in this study
corroborate the goodness of fit of the NIR predictions developed here.

It should be considered that any given calibration model might need to be regularly
updated by adding further locations and harvesting years in order to maintain high
robustness in the prediction of new samples. Hence, more data is still needed to assure a
representative calibration model in the future. However, the results obtained here show
the potential of NIR spectroscopy to detect RRCR directly in the beet pulp and can be
interpreted as a promising starting point for extending the procedure to practical field
applications. One important advantage is that disease quantification can thus be easily
integrated and run in parallel with the harvest. Thereby, the complete harvested field
can be scored, without any limiting sampling area. The NIR-based estimation of RRCR
infection can thus be incorporated in the yield data analyses. RRCR estimation can be
considered as a cofactor to enhance the precision and therefore, the heritability of the sugar
yield per acreage. The more variation one can attribute to certain sources the less variation
is in the error term and selection gain can be increased. The very easy handling and speed
of the NIRS technique allows a fast objective scoring that can be automated, incorporated to
a harvester machine and performed cost-effectively directly in the field without personnel
capacity limits, human scoring bias, nor time restraints. Taken together, results suggest
that this NIRS application might be a useful tool for breeding processes and selection of
sugar beet resistant varieties.
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